
The growth of the mean average crossing number of equilateral polygons in confinement

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 465202

(http://iopscience.iop.org/1751-8121/42/46/465202)

Download details:

IP Address: 171.66.16.156

The article was downloaded on 03/06/2010 at 08:21

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/46
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 465202 (9pp) doi:10.1088/1751-8113/42/46/465202

The growth of the mean average crossing number of
equilateral polygons in confinement

J Arsuaga1,3, B Borgo1, Y Diao2,3 and R Scharein1

1 Department of Mathematics, San Francisco State University, 1600 Holloway Ave,
San Francisco, CA 94132, USA
2 Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte,
NC 28223, USA

E-mail: jarsuaga@math.sfsu.edu and ydiao@uncc.edu

Received 30 July 2009, in final form 25 September 2009
Published 22 October 2009
Online at stacks.iop.org/JPhysA/42/465202

Abstract
The physical and biological properties of collapsed long polymer chains as
well as of highly condensed biopolymers (such as DNA in all organisms) are
known to be determined, at least in part, by their topological and geometrical
properties. With this purpose of characterizing the topological properties of
such condensed systems equilateral random polygons restricted to confined
volumes are often used. However, very few analytical results are known. In
this paper, we investigate the effect of volume confinement on the mean average
crossing number (ACN) of equilateral random polygons. The mean ACN of
knots and links under confinement provides a simple alternative measurement
for the topological complexity of knots and links in the statistical sense. For
an equilateral random polygon of n segments without any volume confinement
constrain, it is known that its mean ACN 〈ACN〉 is of the order 3

16n ln n+O(n).
Here we model the confining volume as a simple sphere of radius R. We provide
an analytical argument which shows that 〈ACN〉 of an equilateral random
polygon of n segments under extreme confinement (meaning R � n) grows as
O(n2). We propose to model the growth of 〈ACN〉 as a(R)n2 + b(R)n ln(n)

under a less-extreme confinement condition, where a(R) and b(R) are functions
of R with R being the radius of the confining sphere. Computer simulations
performed show a fairly good fit using this model.

PACS numbers: 82.35.Pq, 02.10.Ky, 02.40.Sf

1. Introduction

DNA and other biopolymers fold in space in ways that are usually difficult to quantify. This
problem is severely magnified when the polymer is confined to small volumes. For instance,
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DNA is highly condensed in all organisms and the spatial trajectory of the duplex remains a
matter of study [12]. A simple measure to study the folding of polymers in space is by counting
the number of crossings that can be perceived while observing a non-perturbed trajectory of a
given polymer in a given orthogonal projection [15]. To avoid the dependence of this measure
on a single selected orthogonal projection, the average crossing number (ACN), defined as the
average of crossing numbers over all orthogonal projections, is used. For practical purposes
one considers the mean ACN which is defined as the average of ACN over the entire statistical
ensemble of polymers with a fixed length, we denote this value by 〈ACN〉.

In the case of knotted DNA molecules the 〈ACN〉 can be experimentally measured since it
correlates well with the experimentally observed speed of electrophoretic migration of knotted
DNA molecules of the same size but of various knot types [29], with the expected sedimentation
coefficient of different types of DNA knots [34], and with relaxation dynamics of modeled
knotted polymers [13]. This observation is particularly relevant for the understanding of DNA
knots extracted from bacteriophage P4 [19], which have been proposed to study DNA folding
inside bacteriophages [3].

Circular biopolymers and in particular DNA are often modeled in free solution as
equilateral random polygons (also called freely jointed polygons). Some topological and
geometrical properties are known about equilateral random polygons (e.g. [7, 11, 33]) and in
particular it is known that an equilateral random polygon of n segments without any volume
confinement constrain the 〈ACN〉 scales as 3

16n ln n + O(n) [8]. It is often the case the
random polygons need to be modeled under a space confinement. For example, circular
DNA inside bacteriophages (a simple example of genome organization in living organisms)
can be modeled as self-avoiding and semiflexible circular chains with volume exclusion [21].
Numerical studies show that such a space confinement can increase the topological complexity
of the circular chains (random polygons) rapidly [21]. In general, one may model densely
packed circular polymers or DNA confined to a tight space using equilateral random polygons
confined into a given volume and aim at developing a theory that explains the scaling behavior
of different topological and geometrical parameters. This however has proven to be a very
difficult task. In most cases, these results have been limited to numerical studies [3, 4, 20–24].
Theoretical results on the other hand have been limited to simpler polymer models [2].

In this paper, we investigate the case of an equilateral random polygon confined to
a sphere. This simple model can easily be generalized to other convex volumes and has
biological relevance since it can be directly applied to the folding of DNA in bacteriophage
capsids. First, we revisit some of the basic results for equilateral random polygons. Second, we
provide an analytic proof that shows that for tightly confined random equilateral polygons of
length n, 〈ACN〉 scales as O(n2). This prompts us to model 〈ACN〉 as a(R)n2 + b(R)n ln(n),
where R is the radius of the confining sphere. The function a(R) is positive when R is small
and it decreases to 0 as R increases to n/2. The function b(R) ≈ 0 for small values of R
and increases to 3/16 as R increases to n/2 (when the effect of confinement effect totally
vanishes). Third, we perform numerical simulations to determine the values of these scaling
coefficients. We conclude by discussing the relevance of these results to the problem of DNA
packing in bacteriophage P4.

2. Basic facts about equilateral random polygons

Let us formally define the equilateral random polygons first. Let Y1, Y2, . . . , Yn be n
independent random vectors uniformly distributed on S2 (so the joint probability density
function of the three coordinates of each Yj is simply 1

4π
on the unit sphere and 0 otherwise). An

equilateral random walk of n steps, denoted by EWn, is defined as the sequence of points in the
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three-dimensional space R3: X0 = O, Xk = Y1 + Y2 + · · · + Yk , k = 1, 2, . . . , n. Each Xk is
called a vertex of the EWn and the line segment joining Xk and Xk+1 is called an edge
of EWn (which is of unit length). If the last vertex Xn of EWn is fixed, then we
have a conditioned random walk EWn|Xn. In particular, EWn becomes a polygon if
Xn = O. In this case, it is called an equilateral random polygon and is denoted by
EPn. The joint probability density function f (X1, X2, . . . , Xn) of the vertices of an EWn

is f (X1, X2, . . . , Xn) = ϕ(U1)ϕ(U2) · · · ϕ(Un) = ϕ(X1)ϕ(X2 − X1) · · · ϕ(Xn − Xn−1).
Let Xk be the kth vertex of an EWn (n � k > 1), its density function is defined by

fk(Xk) =
∫ ∫

· · ·
∫

ϕ(X1)ϕ(X2 − X1) · · · ϕ(Xk − Xk−1)dX1dX2 · · · dXk−1 (1)

and it has the closed form fk(Xk) = 1
2π2r

∫ ∞
0 x sin rx

(
sin x

x

)k
dx [26]. In the case of EPn,

the density function hk(Xk) of the vertex Xk can be approximated by the following Gaussian
distribution (derived from the above formula) [7, 9, 10]:

hk(Xk) ≈
(√

3

2πσ 2
nk

)3

exp

(
−3|Xk|2

2σ 2
nk

)
,

where σ 2
nk = k(n−k)

n
and the error of the estimation is at most of the order of O

(
1

k5/2 + 1
(n−k)5/2

)
.

From this one can then derive some important results concerning equilateral random polygons.
An application of this formula that is particularly of interest to us is the derivation of the mean
ACN of EPn, as stated in the following theorem.

Theorem 1. [8] For an equilateral random polygon of n steps,

〈ACN〉 = 3
16n ln n + O(n).

Another relevant theoretical result regarding the topological aspects of EPn is the following
theorem (this had been observed in simulations by many independent research groups (for
example [32]).

Theorem 2. [7] Let K be any knot type, then there exists a positive constant ε such that EPn

contains K as a connected sum component with a probability at least 1 − exp(−nε), provided
that n is large enough.

In the following section, we will establish the asymptotic growth rate of 〈ACN〉 for an
equilateral random polygon confined in a tight volume.

3. Analytical results

Let us first give a formal definition of equilateral random walks and polygons confined in a
space. For simplicity, we will assume that the confining space is B(O, r), namely the ball of
radius r > 1 that is centered at the origin O. Furthermore, we will assume that the length of
each step of the walks and polygons is one.

Definition 1. Let X0 ∈ B(O, r) and let S(X0) be the unit sphere centered at X0.
S ′(X0) = S(X0) ∩ B(O, r) is either S(X0) itself or is a spherical cap. If X1 is a random
point uniformly distributed on S ′(X0), then we will say that

−−−→
X0X1 is a confined random step

(from X0). An equilateral random walk of n steps confined in B(O, r) (starting from a point
X0 ∈ B(O, r)) is then defined as a sequence of points X0, X1, X2, . . . , Xn such that

−−−−→
XjXj+1

is a confined random step (from Xj) for each n−1 � j � 0. An equilateral random polygon of

3
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Y

X

X

Y

Figure 1. Two special patterns with their middle steps intersecting each other perpendicularly.

n steps confined in B(O, r) is simply a conditioned equilateral random walk of n steps confined
in B(O, r) under the condition that Xn = X0.

Of course, every equilateral random walk or polygon defined above is confined in B(O, r).
Here in the definition we are allowing the random walks and polygons to intersect the boundary
of B(O, r), but the probability of that is actually zero as one can check. From now on,
we will use Wc

n(X0) to denote an equilateral random walk of n steps confined in B(O, r)
with starting point X0 ∈ B(O, r) and will use P c

n (X0) to denote an equilateral random
polygon of n steps confined in B(O, r) with starting point X0 ∈ B(O, r). Furthermore, we will
use Wc

n(X′, X′′) to denote a conditioned equilateral random walk of n steps confined in B(O, r)
where the condition is that the starting and ending points of the random walk are X′ and X′′

respectively. Any specific configuration of a Wc
n(X′, X′′) is called a pattern. A Wc

n(X′, X′′)
is said to be within an ε-neighborhood of a pattern if each vertex of Wc

n(X′, X′′) is within an
ε-distance from its corresponding vertex in the pattern. Figure 1 shows two special patterns
of equilateral random walks confined in a sphere where they intersect each other at the center
of the sphere.

Lemma 1. Let m = 2�r�+ 3, then there exist positive constants α > 0 and β > 0 (depending
only on r) such that for any X′, X′′, Y ′, Y ′′ in B(O, r), the probability that the ACN between
the middle step of Wc

m(X′, X′′) and the middle step of Wc
m(Y ′, Y ′′) is greater than β is at

least α.

Proof. The choice of m ensures that no matter what X′, X′′, Y ′ and Y ′′ are, one could
always draw two special patterns, one for Wc

n(X′, X′′) and the other for Wc
n(Y ′, Y ′′) such

that their middle steps form a perpendicular cross centered at the origin as shown in figure 1.
This is possible since the distance from any end point in this cross is of a distance at most
r + 1/2 < �r� + 1 to any point in B(O, r). If we perturb the vertices of Wc

n(X′, X′′) and
Wc

n(Y ′, Y ′′) within the 1/4-neighborhood U of these two patterns, then the ACN of the two
middle steps would be greater than some positive constant β. Since the probability that the
vertices of Wc

m(X′, X′′) and Wc
m(Y ′, Y ′′) fall into U (for any such special patterns) is bounded

below by a positive constant (only depending on r), it follows that the probability that the two
middle steps has an ACN � β is bounded below by some positive constant α > 0. �
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Theorem 3. Let P c
n be an equilateral random polygon of n edges confined in B(O, r), then

the mean ACN of P c
n is of the order of O(n2).

Proof. Let �1, �2, . . . , �n be the consecutive edges of P r
n and let aij be the average crossing

number between �i and �j , then the ACN of Pn (written as χn) is simply the sum of aij:∑
1�i<j�n aij = 1

2

∑
1�i,j�n aij , and 〈ACN〉 = ∑

1�i<j�n E(aij ) = 1
2

∑
1�i,j�n E(aij ).

Since aij � 1 for any i, j , it follows that 〈ACN〉 is at most of the order O(n2). On the other
hand, since we are only concerned with the asymptotic behavior of the ACN, we may assume
that n 
 r and we will only consider the aij terms, where i < j , j − i � 2�r� + 3 and
n−j + i � 2�r�+3. Now take such a pair and let T1 be the ith edge and T2 be the j th edge. As
defined in lemma 1, let m be the unique odd positive integer such that m = 2�r�+ 3. Let X′ be
the starting point of the (m − 1)/2-edge (step) prior to T1 (following the natural orientation of
the edges inherited from the definition of P c

n ), X′′ be the ending point of the (m − 1)/2-edge
after T1. Similarly, let Y ′ be the starting point of the (m − 1)/2-edge prior to T2 and Y ′′ be the
ending point of the (m − 1)/2-edge after T2. By the choice of i, j , X′, X′′, Y ′ and Y ′′ match
the cyclic order they inherit from the polygon. Let f (X′, X′′, Y ′, Y ′′) be the joint probability
density function of X′, X′′, Y ′ and Y ′′. Let P(X′, X′′, Y ′, Y ′′) be the (conditional) probability
that the ACN between the middle step of Wc

n(X′, X′′) (which is just T1) and the middle step
of Wc

n(Y ′, Y ′′) (which is T2) is greater than β. By lemma 1, P(X′, X′′, Y ′, Y ′′) � α. Thus we
have

P(aij � β) =
∫

P(X′, X′′, Y ′, Y ′′)f (X′, X′′, Y ′, Y ′′)dX′dX′′dY ′dY ′′

� α

∫
f (X′, X′′, Y ′, Y ′′)dX′dX′′dY ′dY ′′ = α.

It follows that

E(aij ) � P(aij � β)β � αβ.

That is, E(aij ) is bounded below by a positive constant. The result of the theorem now follows
from E(χn) = ∑

1�i<j�n E(aij ) and the fact that there are O(n2) pairs (i, j) satisfying the
conditions i < j , j − i � 2�r� + 3 and n − j + i � 2�r� + 3. �

4. Numerical results

4.1. Methods

To generate ensembles of random equilateral polygons, we use the generalized hedgehog
algorithm [33]. Confinement within spherical volumes was achieved by rejecting those
polygons that had at least one vertex outside the specified radius. Figure 2 shows three
examples of random polygons inside spheres of radii R = 2, 3 and 4 (where the radius
of confinement is measured in unit polygon segment length). Because the computational
complexity of the generalized hedgehog algorithm grows linearly with the length of the
polygon we managed to generate polygons of up to 400 segments confined to spheres of radius
4. Sample sizes ranged from 103 to 106 which is comparable to sample sizes from previous
studies [8, 20].

4.2. Individual ACN computation

Sample conformations were used to calculate both the 〈ACN〉 and the radius of gyration. Each
individual ACN was computed using the solid angle formulation (also known as the Gaussian

5



J. Phys. A: Math. Theor. 42 (2009) 465202 J Arsuaga et al

Figure 2. Confined random polygons generated using the hedgehog method. Each polygon
consists of 150 segments of equal length. From left to right: the radii of confining spheres are
2, 3 and 4, the radii of gyration are 2.23, 3.003 and 4.042 and the ACN is 234.73, 141.24 and
82.67, respectively. (The confining spheres have been re-scaled to unit radius so that the details
of the complexity change can be compared easily.) The effect of confinement on the polygons
complexity is apparent. The presented polygons have been ‘smoothed’ using KnotPlot [31].
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Figure 3. Relationship between mean ACN and the confining radius. The mean ACN is plotted
against the number of segments and is fit as a(R)n2 + b(R)n ln(n). Deviation from free space
scaling is apparent.

integral formula) as explained in [17]. Briefly speaking, in the case that C is a polygon of
n segments of unit length such that each segment is parameterized as γj (s) where s is the
arclength of the segment, then the ACN can be expressed as

∑
1�i �=j�n

1

4π

∫ 1

0

∫ 1

0

|(γ̇i(t), γ̇j (s), γi(t) − γj (s))|
|γi(t) − γj (s)|3 dtds. (2)

4.3. Results

In order to model the behavior of the 〈ACN〉 in confinement and in free space we fit the
data with the function ACN(R, n) = a(R)n2 + b(R)n ln(n), where ACN(R, n) is the 〈ACN〉
as a function of the number of segments and the radius of the confining sphere. The first
term of this formula accounts for the O(n2) growth rate of 〈ACN〉 in the case that R is small
(theorem 4), and the second term accounts for the O(n ln n) growth rate of 〈ACN〉 in the case

6
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Figure 4. Coefficients a(R) and b(R) of ACN(n, R). In each plot, the horizontal axis is the radius
of confinement and the vertical axis is the value of each parameter. The data were fitted using
nonlinear least squares. The range of n (number of segments) used for this fitting is the same as
those used in figure 3.

that there is no volume confinement constrain (theorem 2). Figure 4 shows the asymptotic
behavior for random equilateral polygons for R = 2, 3, 4 and no confinement. By visual
inspection one can easily appreciate the different behavior of the 〈ACN〉 for confined polygons
versus unconfined ones. Curves fit to our simulated data by nonlinear least squares are in
excellent agreement, with χ2 values of 4.85 (R = 2, a = 0.011 19, b = 0.053 58), 3.84
(R = 3, a = 0.004 871, b = 0.076 516) and 3.36 (R = 4, a = 0.002 495, b = 0.099 431).
For large radii of confinement (>4), significantly longer segments would be required to obtain
similar results and are not considered necessary in this study.

4.4. The fitting of the scaling coefficients

Intuitively, one expects that a(R) would be a decreasing function of R that starts as a positive
number when R is small and decreases to near 0 as R increases to pass the average radius
of gyration of the polygons (that is when the confining effect disappears). Similarly, b(R)

should be an increasing function that starts from near 0 when R is small and increases
to the constant 3/16 as n passes the average radius of gyration. Figure 4 shows a(R)

and b(R) as a function of R. In the plot, we have empirically fitted a(R) = a1
R2+a2

, where
a1 = 0.042 35 and a2 = −0.240 17. On the other hand, we have fitted b(R) with the formula
b(R) = b1+b2

√
R

R
+ 0.1875 where b1 = −0.065 21 and b2 = −0.148 42. This provided a fairly

good fit for b(R) as shown in figure 4(b). Note that while this fitting of a(R) does not totally
vanish when R goes to the order of n, it becomes of the order O(1/n2) hence the a(R)n2 term
becomes negligible. In fact, once R reaches O(n1/2) (the size of the mean radius of gyration
of a free equilateral random polygon with n edges), the order of the a(R)n2 term in the fitting
formula becomes O(n) hence it is dominated by the b(R)n ln(n) term in the fitting formula
since b(R) is of the order 3/16 + O(n−1/4). Thus, the fitting formula will fully capture the
main behavior 3/16n ln n of 〈ACN〉 when the polygon is only under mild confinement (with
R = O(n1/2)).
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5. Conclusion and future work

Developing the theory that describes the topological and geometrical properties of polymers
in confinement is important and remains an important challenge. Here, we have shown that
the growth of the 〈ACN〉 for equilateral random polygons confined to spherical volumes
follows a O(n2) formula. This result is important because it shows that the complexity of
self-entanglement of a polymer (modeled as a freely jointed chain) in confinement is different
from that in free space which is known to be 3

16n ln n for 〈ACN〉 [8]. Furthermore, it provides
a reference for models of polymer folding and in particular for DNA folding in confinement.
Interestingly other models give similar results. For instance, uniform random polygons (i.e.
those generated by placing random points uniformly inside a cube) and spooling random
polygons also show an O(n2) behavior [1, 2]. In the future, we aim at applying these results
to better characterize DNA knots extracted from bacteriophage P4 and use these results to
provide new insights in the organization of DNA inside bacteriophages, which still remains a
matter of debate [1, 6, 14, 25]. Furthermore, we aim at investigating other polymer models
as well as other topological properties such as the knotting probability and the mean writhe
which so far has been only investigated using numerical methods.
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